專注于提供教育連鎖加盟, 作文加盟,少兒英語加盟,數學加盟的教育機構。多年品牌服務經驗,獲得 客戶一致好評!
  • 1
  • 2
  • 2
  • 2
 
    學習方法學億教育首頁>>學習方法
 
 
奧數加盟|小學奧數理論知識點整理
更新時間:2017-09-26   作者:學億教育   來 源:學億教育   瀏覽: 1311
1.和差倍問題



和差問題

和倍問題

差倍問題

已知條件

幾個數的和與差

幾個數的和與倍數

幾個數的差與倍數

公式適用范圍

已知兩個數的和,差,倍數關系

公式

①(和-差)÷2=較小數

較小數+差=較大數

和-較小數=較大數

②(和+差)÷2=較大數

較大數-差=較小數

和-較大數=較小數

和÷(倍數+1)=小數

小數×倍數=大數

和-小數=大數

差÷(倍數-1)=小數

小數×倍數=大數

小數+差=大數

問題

求出同一條件下的

和與差

和與倍數

差與倍數


2.年齡問題


三個基本特征:①兩個人的年齡差是不變的;

②兩個人的年齡是同時增加或者同時減少的;

③兩個人的年齡的倍數是發生變化的;



3.歸一問題


基本特點:問題中有一個不變的量,一般是那個“單一量”,題目一般用“照這樣的速度”……等詞語來表示。

關鍵問題:根據題目中的條件確定并求出單一量;



4.植樹問題


基本類型

在直線或者不封閉的曲線上植樹,兩端都植樹

在直線或者不封閉的曲線上植樹,兩端都不植樹

在直線或者不封閉的曲線上植樹,只有一端植樹

封閉曲線上植樹

基本公式

棵數=段數+1

棵距×段數=總長

棵數=段數-1

棵距×段數=總長

棵數=段數

棵距×段數=總長

關鍵問題

確定所屬類型,從而確定棵數與段數的關系



5.雞兔同籠問題


基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;


基本思路:

  ①假設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):

  ②假設后,發生了和題目條件不同的差,找出這個差是多少;

  ③每個事物造成的差是固定的,從而找出出現這個差的原因;

  ④再根據這兩個差作適當的調整,消去出現的差。

基本公式:

  ①把所有雞假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)

  ②把所有兔子假設成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)

  關鍵問題:找出總量的差與單位量的差。



6.盈虧問題


  基本概念:一定量的對象,按照某種標準分組,產生一種結果:按照另一種標準分組,又產生一種結果,由于分組的標準不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量.

  基本思路:先將兩種分配方案進行比較,分析由于標準的差異造成結果的變化,根據這個關系求出參加分配的總份數,然后根據題意求出對象的總量.

  基本題型:

  ①一次有余數,另一次不足;

  基本公式:總份數=(余數+不足數)÷兩次每份數的差

  ②當兩次都有余數;

  基本公式:總份數=(較大余數一較小余數)÷兩次每份數的差

  ③當兩次都不足;

  基本公式:總份數=(較大不足數一較小不足數)÷兩次每份數的差

  基本特點:對象總量和總的組數是不變的。

  關鍵問題:確定對象總量和總的組數。



7.牛吃草問題


  基本思路:假設每頭牛吃草的速度為“1”份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。

  基本特點:原草量和新草生長速度是不變的;

  關鍵問題:確定兩個不變的量。

  基本公式:

  生長量=(較長時間×長時間牛頭數-較短時間×短時間牛頭數)÷(長時間-短時間);

  總草量=較長時間×長時間牛頭數-較長時間×生長量;



8.周期循環與數表規律


  周期現象:事物在運動變化的過程中,某些特征有規律循環出現。

  周期:我們把連續兩次出現所經過的時間叫周期。

  關鍵問題:確定循環周期。

  閏 年:一年有366天;

  ①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;

  平 年:一年有365天。

  ①年份不能被4整除;②如果年份能被100整除,但不能被400整除;



9.平均數


  基本公式:①平均數=總數量÷總份數

  總數量=平均數×總份數

  總份數=總數量÷平均數

  ②平均數=基準數+每一個數與基準數差的和÷總份數

  基本算法:

  ①求出總數量以及總份數,利用基本公式①進行計算.

  ②基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標準,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最后求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式②。



10.抽屜原理


  抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那么必有一個抽屜中至少放有2個物體。

  例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那么就有以下四種情況:

  ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

  觀察上面四種放物體的方式,我們會發現一個共同特點:總有那么一個抽屜里有2個或多于2個物體,也就是說必有一個抽屜中至少放有2個物體。


  抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那么必有一個抽屜至少有:

  ①k=[n/m ]+1個物體:當n不能被m整除時。

  ②k=n/m個物體:當n能被m整除時。


  理解知識點:[X]表示不超過X的最大整數。

  例[4.351]=4;[0.321]=0;[2.9999]=2;

  關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據抽屜原則進行運算。

 
 
 
公司地址:長沙市韶山北路湖南文化大廈15A21號
聯系電話:18374982223
Copyright©2007-2019 長沙學億教育科技有限公司All Rights Reserved.
技術支持:學億網絡運營部|湘ICP備17000786號

阿麗絲韻

快乐10分走势图广东
辉煌棋牌游戏手机版下载 河南22选5专家预测 黑龙江十一选五遗漏 管家婆免费资料四肖期中 黄金马精准三尾中特 开奖福建22选5 百度青海11选5走势图 快乐飞艇3期全天计划 官方娱乐棋牌 cba战况最新比分 河北麻将app代理 江苏快3走势图定牛 500比分直播完整手机版北京单场 陕西丫丫麻将亮六飞一 靠谱的网赚 极速快3